1 (a) Solve this quadratic equation by factorisation.

$$
x^{2}-7 x+10=0
$$

(a)
(b) Solve algebraically these simultaneous equations.

$$
\begin{aligned}
4 x+3 y & =6 \\
y & =13-5 x
\end{aligned}
$$

(b) $x=$

$$
y=
$$

2 Solve, algebraically, these simultaneous equations.

$$
\begin{aligned}
20 x+3 y & =1 \\
6 x-5 y & =18
\end{aligned}
$$

$x=$$y=$[4]

3 Emil makes chairs and stools.
Each chair has 4 legs and each stool has 3 legs.
Emil has made c chairs and t stools.
In total the chairs and stools have 76 legs.
This information gives the equation

$$
4 c+3 t=76
$$

(a) Emil has made a total of 22 chairs and stools.

Complete this equation to show this information.

$$
c+t=\square
$$

(b) Use algebra to solve these two equations simultaneously to find out how many chairs and how many stools Emil has made.
(b) chairs, $c=$ \qquad

4 Island Holidays has many cottages for rent in the Shetland Islands.
They are for any number of people from 2 to 15.
The table shows information for nine of their cottages.
It shows the number of people each cottage can accommodate, and the cost of renting it for a week in July.

Number of people	2	4							12
Cost (£)	510	640	550	800	820	1040	1130	1110	1350

The results for the first four cottages are plotted on the scatter diagram.

(a) Complete the scatter diagram and draw a line of best fit.
(b)* Lizzie wants to rent a cottage for 10 people for a week in July. She expects the food bill to be $£ 400$.
The cost of food and rent is to be shared equally between the 10 people.
Calculate how much each person should expect to pay.
Explain how you have worked out your answer.
\qquad
\qquad
\qquad
\qquad

5 (a) Rearrange this formula to make p the subject.

$$
t=2 p-3
$$

(a)
(b) Solve these simultaneous equations.

$$
\begin{aligned}
& x+y=7 \\
& x-y=-3
\end{aligned}
$$

(b) $x=$
$y=$

6 The grid shows the graph of $y=2 x-4$.

(a) Complete the table for $y=x^{2}-4 x+3$.

x	0	1	2	3	4	5
y	3	0		0	3	

(b) On the grid, draw the graph of $y=x^{2}-4 x+3$ for $0 \leqslant x \leqslant 5$.
(c) Use your graphs to solve these simultaneous equations.

$$
\begin{align*}
& y=2 x-4 \\
& \begin{array}{ll}
y=x^{2}-4 x+3 & \text { (c) } x=
\end{array} \\
& y= \\
& x=. ~ y=~ \tag{2}
\end{align*}
$$

7 (a) The grid shows the graph of $14 x+7 y=18$.

(i) Complete this table of values for $y=2 x+2$.

x	-3	0	1
y			

(ii) On the grid, draw the straight line graph of $y=2 x+2$.
(iii) Use your graph to find the approximate solution of these simultaneous equations.

$$
\begin{aligned}
14 x+7 y & =18 \\
y & =2 x+2
\end{aligned}
$$

(a)(iii) $x=$ \qquad

$$
y=
$$

(b) (i) Use algebra to find the exact solution of these simultaneous equations.

$$
\begin{aligned}
14 x+7 y & =18 \\
y & =2 x+2
\end{aligned}
$$

\qquad
(b)(i) $x=$
$y=$
(ii) Explain why reading off the graph did not give the exact solution to these simultaneous equations.

